Diamondoid

 

A diamondoid, in the context of building materials for nanotechnology components, most generally refers to structures that resemble diamond in a broad sense: namely, strong, stiff structures containing dense, 3-D networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Examples of diamondoid structures would include crystalline diamond, sapphire, and other stiff structures similar to diamond but with various atom substitutions which might include N, O, Si, S, and so forth. Sp˛-hybridized carbon structures that - in contrast to spł-hybridized carbon in diamond - arrange in planar sheets ("graphene" sheets) are sometimes also included in the class of diamondoid materials for nanotechnology, e.g., graphite, carbon nanotubes consisting of sheets of carbon atoms rolled into tubes, spherical buckyballs and other graphene structures.

Source

Like diamond; chemical structures or systems (especially nanomachines as envisioned by Eric K. Drexler) based on diamond derivatives or stiff carbon bonds.

Source

Stuctures that resemble diamond in a broad sense, strong stiff structures containing dense, three dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will in fact be rich in tetrahedrally coordinated carbon

Source

Linked cages of adamantane

Source

Structures that resemble diamond in a broad sense, strong stiff structures containing dense, three dimensional networks of covalent bonds; diamondoid materials could be as much as 100 to 250 times as strong as titanium, and far lighter.

Source

As used in this volume, this term describes structures that resemble diamond in a broad sense: strong, stiff structures containing dense, three-dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will in fact be rich in tetrahedrally coordinated carbon. Diamondoid is used more narrowly elsewhere in the literature.

Source

Like diamond; chemical structures or systems (especially 'nanomachines' as envisioned by K. Eric Drexler) based on diamond derivatives or stiff carbon bonds.

Source

Stuctures that resemble diamond in a broad sense, strong stiff structures containing dense, three dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will in fact be rich in tetrahedrally coordinated carbon. [NTN] Materials with superior strength to weight ratio, as much as 100 to 250 times as strong as Titanium, and much lighter. Possibly used to build stronger lighter rockets and space components, or a variety of other earth-bound articles for which weight and strength are a consideration.

Source

Stuctures that resemble diamond in a broad sense, strong stiff structures containing dense, three dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will in fact be rich in tetrahedrally coordinated carbon. Materials with superior strength to weight ratio, as much as 100 to 250 times as strong as Titanium, and much lighter. Possibly used to build stronger lighter rockets and space components, or a variety of other earth-bound articles for which weight and strength are a consideration

Source

Structures that resemble diamond in a broad sense; strong, stiff structures containing dense, three-dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will be rich in tetrahedrally coordinated carbon.

Source

Stuctures that resemble diamond in a broad sense, strong stiff structures containing dense, three dimensional networks of covalent bonds, formed chiefly from first and second row atoms with a valence of three or more. Many of the most useful diamondoid structures will in fact be rich in tetrahedrally coordinated carbon. [NTN] Materials with superior strength to weight ratio, as much as 100 to 250 times as strong as Titanium, and much lighter. Possibly used to build stronger lighter rockets and space components, or a variety of other earth-bound articles for which weight and strength are a consideration.

Source

 

 

 

 

 

 

 

 

 


Note: If a company/institute/site doesn't want to present its own information in nanodic.com, it can sent one e-mail to info@nanodic.com.