Dry Nanotechnology

 

Derives from surface science and physical chemistry, focuses on fabrication of structures in carbon silicon, and other inorganic materials. Unlike the 'wet' technology, 'dry' techniques admit use of metals and semiconductors. The active conduction electrons of these materials make them too reactive to operate in a 'wet' environment, but these same electrons provide the physical properties that make 'dry' nanostructures promising as electronic, magnetic, and optical devices. Another objective is to develop 'dry' structures that possess some of the same attributes of the self-assembly that the wet ones exhibit.

Source

Derives from surface science and physical chemistry, focuses on fabrication of structures in carbon (e.g. Fullerenes and nanotubes), silicon, and other inorganic materials. Unlike the "wet" technology, "dry" techniques admit use of metals and semiconductors. The active conduction electrons of these materials make them too reactive to operate in a "wet" environment, but these same electrons provide the physical properties that make "dry" nanostructures promising as electronic, magnetic, and optical devices. Another objective is to develop "dry" structures that possess some of the same attributes of the self-assembly that the wet ones exhibit. [Rice University]

Source

Derives from surface science and physical chemistry, focuses on fabrication of structures in carbon (e.g. Fullerenes and nanotubes), silicon, and other inorganic materials. Unlike the "wet" technology, "dry" techniques admit use of metals and semiconductors. The active conduction electrons of these materials make them too reactive to operate in a "wet" environment, but these same electrons provide the physical properties that make "dry" nanostructures promising as electronic, magnetic, and optical devices. Another objective is to develop "dry" structures that possess some of the same attributes of the self-assembly that the wet ones exhibit. [rice university]

Source

Derives from surface science and physical chemistry, focuses on fabrication of structures in carbon silicon, and other inorganic materials. Unlike the 'wet' technology, 'dry' techniques admit use of metals and semiconductors. The active conduction electrons of these materials make them too reactive to operate in a 'wet' environment, but these same electrons provide the physical properties that make 'dry' nanostructures promising as electronic, magnetic, and optical devices. Another objective is to develop 'dry' structures that possess some of the same attributes of the self-assembly that the wet ones exhibit.

Source

Derives from surface science and physical chemistry, focuses on fabrication of structures in carbon (e.g. Fullerenes and nanotubes), silicon, and other inorganic materials. Unlike the "wet" technology, "dry" techniques admit use of metals and semiconductors. The active conduction electrons of these materials make them too reactive to operate in a "wet" environment, but these same electrons provide the physical properties that make "dry" nanostructures promising as electronic, magnetic, and optical devices. Another objective is to develop "dry" structures that possess some of the same attributes of the self-assembly that the wet ones exhibit. [rice university]

Source


___________________

Refer to this page:

___________________

Related Terms:

 

Note: If a company/institute/site doesn't want to present its own information in nanodic.com, it can sent one e-mail to info@nanodic.com.