Molecular motor

 

Molecular motors are biological molecular machines that are the essential agents of movement in living organisms. Generally speaking, a motor may be defined as a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work [1]. In terms of energetic efficiency, these types of motors can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment where the fluctuations due to thermal noise are significant.

Source

Molecular motors are biological molecular machines that are the essential agents of movement in living organisms. Generally speaking, a motor may be defined as a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work [1]. In terms of energetic efficiency, these types of motors can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment where the fluctuations due to thermal noise are significant.

Source

Nanoscale motor based Ofl proteins (rotary and linear) as ideal tools for nanoactuation and fabrication.

Source

Molecular machine that produces linear or rotary motion

Source

 

 

 

 

 

 

 

 

 


___________________

Refer to this page:

___________________

Related Terms:

 

Note: If a company/institute/site doesn't want to present its own information in nanodic.com, it can sent one e-mail to info@nanodic.com.