Quantum Mechanic

 

Describes a system of particles in terms of a wave function defined over the configuration of particles having distinct locations is implicit in the potential energy function that determines the wave function, the observable dynamics of the motion of such particles from point to point. In describing the energies, distributions and behaviours of electrons in nanometer-scale structures, quantum mechanical methods are necessary. Electron wave functions help determine the potential energy surface of a molecular system, which in turn is the basis for classical descriptions of molecular motion. Nanomechanical systems can almost always be described in terms of classical mechanics, with occasional quantum mechanical corrections applied within the framework of a classical model.

Source

Quantum mechanics describes a system of particles in terms of a wave function defined over the configuration space of the system. Although the concept of particles having distinct locations is implicit in the potential energy function that determines the wave function (e.g., of a ground-state system), the observable dynamics of the system cannot be described in terms of the motion of such particles from point to point. In describing the energies, distributions, and behaviors of electrons in nanometer-scale structures, quantum mechanical methods are necessary. Electron wave functions help determine the potential energy surface of a molecular system, which in turn is the basis for classical descriptions of molecular motion. Nanomechanical systems can almost always be described in terms of classical mechanics, with occasional quantum mechanical corrections applied within the framework of a classical model

Source

A largely computational physical theory explaining the behavior of quantum phenomena, which incorporates the theory of special relativity. Despite dilignet attempts, general relativity has not been sucessfully incorporated into quantum mechanics. [NTN]

Source

A largely computational physical theory explaining the behavior of quantum phenomena, which incorporates the theory of special relativity. Despite dilignet attempts, general relativity has not been sucessfully incorporated into quantum mechanics. [NTN]

Source

A physical model of chemical and optical phenomena, as well as the behaviour of matter in general on a small scale.

Source


___________________

Refer to this page:

___________________

Related Terms:

 

Note: If a company/institute/site doesn't want to present its own information in nanodic.com, it can sent one e-mail to info@nanodic.com.