Quantum Well

 

A quantum well is a potential well that confines particles, which were originally free to move in three dimensions, to two dimensions, forcing them to occupy a planar region. The effects of quantum confinement take place when the quantum well thickness becomes comparable at the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e., the carriers can only have discrete energy values.

Source

A P-N-P junction in which the 'N' layer is ~10nm (where traditional physics leaves off and quantum effects take over) and an 'electron trap' is created.

Source

A theoretical concept to understand the quantum mechanical energy distribution and behaviour of nanoscaled bonded systems (e.g. Energy levels of bonded electrons, tunneling effect).

Source

A P-N-P junction in which the "N" layer is ~10 nm (where traditional physics leaves off and quantum effects take over) and an "electron trap" is created. "If one makes a heterostructure with sufficiently thin layers, quantum interference effects begin to appear prominently in the motion of the electrons. The simplest structure in which these may be observed is a quantum well, which simply consists of a thin layer of a narrower-gap semiconductor between thicker layers of a wider-gap material." See Center for Quantum Electronics U of Dallas

Source

A P-N-P junction in which the "N" layer is ~10 nm (where traditional physics leaves off and quantum effects take over) and an "electron trap" is created. "If one makes a hetero-structure with sufficiently thin layers, quantum interference effects begin to appear prominently in the motion of the electrons. The simplest structure in which these may be observed is a quantum well, which simply consists of a thin layer of a narrower-gap semiconductor between thicker layers of a wider-gap material"

Source

A P-N-P junction in which the 'N' layer is ~10nm (where traditional physics leaves off and quantum effects take over) and an 'electron trap' is created.

Source

A P-N-P junction in which the "N" layer is ~10 nm (where traditional physics leaves off and quantum effects take over) and an "electron trap" is created. "If one makes a heterostructure with sufficiently thin layers, quantum interference effects begin to appear prominently in the motion of the electrons. The simplest structure in which these may be observed is a quantum well, which simply consists of a thin layer of a narrower-gap semiconductor between thicker layers of a wider-gap material." See Center for Quantum Electronics U of Dallas

Source

 

 

 

 

 

 


___________________

Refer to this page:

___________________

Related Terms:

 

Note: If a company/institute/site doesn't want to present its own information in nanodic.com, it can sent one e-mail to info@nanodic.com.